On the Error-Correcting Radius of Folded Reed-Solomon Code Designs

نویسنده

  • Joschi Brauchle
چکیده

A general formula for the error-correcting radius of linear-algebraic multivariate interpolation decoding of folded Reed–Solomon (FRS) codes is derived. Based on this result, an improved construction of FRS codes is motivated, which can be obtained by puncturing Parvaresh–Vardy codes. The proposed codes allow decoding for all rates, remove the structural loss in decoding radius of the original FRS design and maximize the fraction of correctable errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achieving List Decoding Capacity Using Folded Reed-Solomon Codes

We present error-correcting codes that achieve the information-theoretically best possible trade-off between the rate and error-correction radius. Specifically, for every 0 < R < 1 and ε > 0, we present an explicit construction of error-correcting codes of rate R that can be list decoded in polynomial time up to a fraction (1 − R − ε) of errors. At least theoretically, this meets one of the cen...

متن کامل

Cyclotomic function fields, Artin–Frobenius automorphisms, and list error correction with optimal rate

Algebraic error-correcting codes that achieve the optimal trade-off between rate and fraction of errors corrected (in the model of list decoding) were recently constructed by a careful “folding” of the Reed-Solomon code. The “low-degree” nature of this folding operation was crucial to the list decoding algorithm. We show how such folding schemes useful for list decoding arise out of the Artin-F...

متن کامل

Explicit Capacity-Achieving List-Decodable Codes or Decoding Folded Reed-Solomon Codes up to their Distance

For every 0 < R < 1 and ε > 0, we present an explicit construction of error-correcting codes of rate R that can be list decoded in polynomial time up to a fraction (1 − R − ε) of errors. These codes achieve the “capacity” for decoding from adversarial errors, i.e., achieve the optimal trade-off between rate and error-correction radius. At least theoretically, this meets one of the central chall...

متن کامل

Parallel Reed-Solomon Codes

The compound and integrated parallel Reed-Solomon (RS) codes for multichannel communication systems are suggested. The matrix model of errors for such codes is investigated. Methods of coding and decoding of parallel RS codes, and also methods of increase of their error correcting capability are developed.

متن کامل

Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability

A new probabilistic decoding algorithm for low-rate Interleaved Reed– Solomon (IRS) codes is presented. This approach increases the error correcting capability of IRS codes compared to other known approaches (e.g. joint decoding) with high probability. It is a generalization of well-known decoding approaches and its complexity is quadratic with the length of the code. Asymptotic parameters of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014